
A Compression Algorithm for Nucleotide Data
Based on Differential Direct Coding and Variable

Length Look up Table (LUT)

Govind Prasad Arya
Scholar,Uttarakhand Technical University, Dehradun

&
Computer Science & Engg Department

Shivalik College of Engineering, Dehradun

R. K. Bharti
Computer Science & Engg Department

Bipin Tripathi Kumaon Institute of Technology, Dwarahat

Abstract-The ongoing exponential increase of genomic data,
together with full diploid human genomes, creates new
challenges not only for understanding genomic structure,
function and development, but also for the storage, navigation
and privacy of genomic data. In this paper, we have proposed a
modified Direct Differential Coding algorithm. It is a general
purposed nucleotide compression algorithm based on variable
length LUT. Here the method identifies repeat regions in the
individual sequence and the repeat regions are store in the look-
up table (LUT). This algorithm compresses both repeat and non
repeat sequences. It also handles the non base character and
compresses any nucleotide sequences. It gives better result as
compared to existing algorithm.
The Differential Direct Coding algorithm was a fixed size look-
up table algorithm i.e. it used a table of fixed size containing the
64 maximum possible combinations of the triplets obtained by
combination of four characters A, G, T and C. We make this
table of variable length by adding some more combinations in
the look-up table, which are of the size of multiple of triplet i.e.
their size is (6,9.12….) since the number of ACSII characters
available were not utilized completely. Our algorithm is based
on longest common substitution (LCS). It searches a longest
common sequence in multiple of 3 and then substitutes an
ASCII value in the place of that sequence to generate variable
length LUT. In the previous algorithms, the compression ratio
so obtained was smaller as compared to the variable length LUT
compression algorithm which creates a relatively massive
difference when the algorithm is applied on the large genomic
repositories. In addition to this, our algorithm also utilizes the
maximum number of ASCII characters which are available,
thus increasing the efficiency.

BACKGROUND
The area dealing with the storage of the biological data of
living organisms, forces us to use the database management
system to store the data. The basic need is to warehouse this
data, which carries the sequences of large sizes, lying in the
databases.
Genbank is one of the biggest databases for biological
sequences, whose size roughly doubles in every 18 months
[1]. Though in present scenario, space availability is not

considered as a big problem, since the high capacity storage
devices are easily available in low costs, still the compression
of these biological data is of great concern due to many
factors like fast searching and retrieval of the data and for
performing operations on them.
There are many methods to achieve the compression of the
data. For e.g. pointer method, table method, etc. [3, 4, 5, 6,
7]. In this research we will particularly concentrate on the
table method. There exist many algorithms based on
dictionary method like Ziv-Lampel. There exist some other
arithmetic encoding algorithms also like Huffman algorithm.
However, these universal text compression algorithms are not
suitable for compression of biological sequences as they
consider the sequence as a pure text stream. If we talk about
the DNA sequences, we know that it deals with only four
symbols representing four nucleotide bases {A, C, T, G}.
these four symbols could have been modeled as {00, 01, 10,
11} respectively, where we can observe that every nucleotide
base occupying 8 bit is made to occupy 2 bits, when encoded
in the above mentioned binary form. This could have been
one of the most efficient encoding schemes, if and only if
there were no other symbols in the sequence, other than A, G,
T and C base characters. Here, though the encoding can be
done, but main problem will occur during decompression as
the binary code of the unexpected symbol like N or S which
will definitely match with the binary code of A, G, T and C.
An another type of algorithm used for DNA compression is
Differential Direct (2D) Coding Algorithm [2], which can
overcome this problem by differentiating between the base
characters and the unexpected symbols. The 2D coding
algorithm uses the group of three characters (triplets), being
replaced by some other character.
Shortcomings of 2D Algorithm
a) As discussed, the algorithm stores all the possible

combinations of {A, G, T, C, U}, though some of the
combinations are not acceptable and are never used,
therefore leaving some of the non-printable ASCII
characters unused.

Govind Prasad Arya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4411- 4416

4411

b) It only concentrates over the triplets, even though other
combinations may yield better compression ratio.

PROPOSED ALGORITHM: DIFFERENTIAL DIRECT CODING

WITH VARIABLE LENGTH LOOK-UP TABLE
Whenever we need to compress some biological sequence,
we are aware that at a time only a DNA or mRNA sequence
will be compressed. Hence, if the case of formation of triplets
is considered, with combination of four symbols {A, C, G, T}
or {A, C, G, U} for DNA or mRNA respectively, we will
encounter maximum 64 combinations. These 64 triplet
combinations can be handled by 64 non-printable ASCII
characters, whereas there exist total 127 non-printable ASCII
characters. Therefore, the remaining 63 characters can be
used to store some other combinations of size more than 3,
which can yield a better compression. We divide the look-up
table into two parts here: fixed length LUT and variable
length LUT. The former one will always exist there
containing 64 combinations of triplets, but the variable length
LUT can be of variable size, containing the combination
bases of the size which is in multiple of 3. This will yield to
the proper utilization of the available non-printable ASCII
characters.
Model: We consider the ASCII characters [8] between the
ranges 0 to 127 for the Auxiliary symbols. The other range
between -1 to -127 is divided in order to adjust fixed size
LUT and variable size LUT. The remaining -128th character
is used for encoding the unknown character. The model is
shown in Table 1.
Coding: Here we will apply the model described above, for
the encoding of input sequence. As the input sequence will
begin scanning, we will always search for the triplet from the
fixed size LUT. It will further scan next triplet. Therefore the
total scanned characters will be of length 6 now. If this
combination of 6 characters is available in the variable part
lookup table, we will scan next triplet, otherwise we will
write the ASCII character corresponding to the last match
group in the output file and also insert the current
combination into the variable part of look-up table. This
process will be carried on till the whole sequence is encoded.
But we will always keep in mind that, once the variable size
look-up table is filled, we store no more patterns and just
search for the combinations from both parts of the table. Also
this will be followed by writing the output corresponding to
that combination to the output file. This output file will be the
required compressed file, when the whole sequence is
scanned. While scanning the input sequence, the case may
occur where a triplet cannot be formed. Here we will write
that single character or a group of two into the output file as it
is. Whenever an unexpected symbol is obtained, we will stop
scanning the triplets and write that unexpected character’s
ASCII equivalent, followed by its positive integral repeats in
its decimal form. This can be explained in Table 2.
Algorithm
Initialize: String s=NULL
Initialize: st=NULL
Initialize: t=NULL

Step 1: read first three unprocessed characters (t). If t!=
NULL, go to step 2.
Else: process the last one or two characters by step 5.
Step 2: Check that t has all non-N characters. If it is true, go
to step 3.
Else if t has N characters, go to step 4
Else go to step 5.
Step 3: If st exists in the LUT* then s=st Else
 {
 Output the code (character) for s
// signed Byte code (character) that are mapped in LUT
(From -1 to -127).
Add st to the LUT table;
 s=t;
 }
 End if
Step 4: Search first N and successive Ns in the string and
count total number of appearing in successive Ns, replace all
such Ns with “/n**/” into destination file. After this, go to
step 6.
 If number of successive Ns appears more than one time
repeat the step 4.
Step 5: write non-N characters whose number is less than
three into destination file directly without any modification.
After that, go to step 6.
Step 6: Return to step 1 and repeat all process until EOF is
reached.
The detailed java programming code is mentioned in
APENDIX.

RESULTS
Thus proposed algorithm has high compression ratio to other
existing DNA Sequence Compression algorithms. This
algorithm also uses less amount of memory as compared to
the other algorithms and is easy to implement.
The proposed algorithm compresses Nucleotide sequences
like DNA as well as RNA. All other algorithms use only the
other properties of sequences such as repeated and non-
repeated. If the sequence is compressed using proposed
algorithm it will be easier to make sequence analysis between
compressed sequences. It will also be easier to make multi
sequence alignment. High compression ratio also suggests a
highly repetitive sequence. The compression results for
differential direct coding using fixed length LUT & variable
length LUT are shown in Table 3.
The Existing Algorithm Vs Proposed Algorithm
(A Comparative Study)
With the help of fixed length LUT we can compress the DNA
sequence up to 1/3 of its original size. But now we can
achieve higher compression by using variable length LUT. In
this research paper we are making some modification in
Differential Direct Codling’s Look up Table. Our result
shows that the proposed algorithm is better than the existing
one. Our algorithm is also based on longest common
substitution (LCS), besides substitution of triplets only. The
proposed algorithm can provide much better compression as
the longer sequences are found frequently in big sequences.

Govind Prasad Arya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4411- 4416

4412

Table1. The 2D Coding With Variable Length LUT Data Model

Type of Data Description Range Look-Up Table

Auxiliary Symbol ASCII 0 to 127

Triplet Set of three Base characters -1 to -64 Fix LUT

Multiple of Triplet Set of 6, 9, 12… Base Characters -65 to -127 Variable Length LUT

Unknown ? -128

Table 2.The 2D Encoding Process with Variable Length LUT

Step Input Sequence Triplet(t)
Multiple of
Triplet (st)

Look-Up Table Encoded
Sequence (s) Status of st Entry

1 ACTGCTACTGCTNNNTC

2 ACT ACT ACT Found
ACT = #
GCT = +

3 GCT GCT ACTGCT Not Found
Add with

ACTGCT=$

4 ACT ACT GCTACT Not Found
Add with

GCTACT=@
#+

5 GCT GCT ACTGCT Found ACTGCT=$ #+

6 NNN #+$N3

7 TC TC TC <3 Char #+$N3TC

Table 3.Results & Conclusion

S.N Type of Sequence
Original size of sequence

before compression

Size of Sequence after Compression

Using Direct Differential
Coding(2D)

Using Direct Differential Variable
length LUT

1 atatsgs 9647 3217 3101

2 atef1a23 6022 2008 1957

3 atrdnaf 10014 3338 3276

4 atrdnai 5287 1763 1734

5 chmpxx 15180 5060 4874

6 chntxx 155844 51948 50540

7 hehcmvcg 229354 76452 74736

8 humdystrop 105265 35089 34347

9 humhdabcd 58864 19622 19201

10 vaccg 47912 15972 15374

Average 64338.9 21446.9 20914

References
1. Benson,D.A. & Karsch-Mizrachi,I., GenBank. Nucleic Acids Res.,

(2008) 36, D25–D30.
2. Gregory Vey et al., Differential direct coding: a compression algorithm

for nucleotide sequence data, Database, (2009), doi:
10.1093/database/bap013.

3. J. Ziv & A. Lempel., A universal algorithm for sequential data
compression, (1977) IEEE Transactions on Information Theory, vol.
IT-23.

4. Behzadi,B. & LeFessant,F., DNA compression challenge revisited.
Symposium on Combinatorial Pattern Matching (CPM), (2005), Jeju
Island, Korea, Springer, Berlin/Heidelberg,pp. 190–200.

Govind Prasad Arya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4411- 4416

4413

5. Cherniavski,N. & Lander,R., Grammar-based compressionof DNA
sequences, (2004) , Computer Science & Engineering Technical
Report. University of Washington, 2007-05-02, pp. 1–21.

6. X. Chen & M. Lip, Dnacompress:fast and effective dna sequence
compression, (2002), Bioinformatics, vol. 18.

7. Bao,S. et al., A DNA sequence compression algorithm based on LUT
and LZ77, (2005)

8. Ascii code. [Online]. Avalable: http://www.LookupTables.com
9. Ateet Mehta, (2010), et al., “ DNA Compression using Hash Based

Data Structure”, IJIT&KM, Vol2 No.2, pp. 383-386.
10. Cao,M.D. et al. (2007) A simple statistical algorithm for biological

sequence compression. In Proceedings of the IEEE Data Compression
Conference (DCC). IEEE Computer Society, pp. 43-52.

11. Galperin,M.Y. and Cochrane,G.R. (2009) Nucleic Acids Research
annual Database Issue and the NAR online Molecular Biology
Database Collection in 2009. Nucleic Acids Res., 37, D1–D4.

12. Liu,Q., Yang,Y., Chen,C. et al. (2008) RNACompress: grammar-based
compression and informational complexity measurement of RNA
secondary structure. BMC Bioinformatics, 9, 176.

APENDIX
Java Programming Code

Compress File Button Code for 2D Coding With Variable
Length LUT
private void
jButton7ActionPerformed(java.awt.event.ActionEvent evt)
{
 String tf;
 long size;
 float f,g=1;

 tf=textField2.getText()+"/"+textField3.getText();
 File fs=new File(textField1.getText());
 File ft=new File(tf);

 size=fs.length();
 textField6.setText(String.valueOf(size)+" Bytes");
 f=100.00f/size;
 try
 {
 RandomAccessFile fr = new RandomAccessFile(fs,"r");
 RandomAccessFile fw = new RandomAccessFile(ft,"rw");

 int i=0,bc=0,k,uc=0,d=3;
 long Nc=0;
 byte ch,code;
 byte triplet[]=new byte[d];
 char s[]=new char[d];

 ch=(byte)fr.read();

 while(ch!=-1)
 {
 if(ch=='A' || ch=='C' || ch=='T' ||ch=='G' || ch=='a' || ch=='c' ||
ch=='t' || ch=='g')
 {
 triplet[i]=ch;
 s[i]=(char)ch;
 i++;bc++;

 else if(ch=='N')
 {
 for(k=0;k<bc;k++)
 fw.write(triplet[k]);

 Nc=1;
 while((byte)fr.read()==(byte)'N')
 {Nc++;}
 fw.write((byte)'N');
 fw.writeBytes(String.valueOf(Nc));
 Nc=0;
 fr.seek(fr.getFilePointer()-1);
 triplet=new byte[3];
 bc=0;i=0;
 }

 if(bc==d)
 {
 textField13.setText(String.valueOf(s));
 VAR_LUT(triplet,d);
 textField14.setText(String.valueOf(w));
 if(found==0)
 {
 fw.writeByte(dw);
 textField15.setText(String.valueOf((char)dw));
 }

 triplet=new byte[d];
 s=new char[d];
 bc=0;i=0;
 }

 }

 ch=(byte)fr.read();
 g=(g+f);
 if(g>100)
 g=100;

 textField17.setText(String.valueOf((int)g));

 }

 if(bc!=0 || found==0)
 {
 code=search_data_code(w);
 fw.writeByte(code);
 textField15.setText(String.valueOf((char)code));

 for(k=0;k<bc;k++)
 {
 fw.write(triplet[k]);
 textField15.setText(String.valueOf((char)triplet[k]));
 }
 }

 fr.close();
 fw.close();
 }

 catch(Exception e)
 {
 System.out.println("compress Button "+e);
 }

 textField7.setText(String.valueOf(ft.length())+" Bytes");
 Long v=100-(ft.length()*100/fs.length());
 textField16.setText(String.valueOf(v)+"%");

Govind Prasad Arya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4411- 4416

4414

}

public void VAR_LUT(byte triplet[],int d)
{
 found=0;
 byte b[];
 String s1,t;
 char c[]=new char[d];
 int p;

 for(p=0;p<=(d-1);p++)
 c[p]=(char)triplet[p];

 t=String.copyValueOf(c);
 wt=w+t;

 try
 {

 String str="SELECT * FROM
2D_VARIABLE_LENGTH_LUT";
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection
con=DriverManager.getConnection("jdbc:odbc:dna_ds_dd");
 Statement stmt =

con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

 ResultSet rs = stmt.executeQuery(str);

 rs.first();
 while(rs.isAfterLast()==false)
 {
 s1=rs.getString("data_word");
 if(s1.equals(wt))
 {
 w=wt;
 found=1;
 break;
 }

 rs.next();
 }

 if(found==0)
 {
 byte rb2;
 rs.first();
 rb2=(byte)rs.getInt("code");
 rb2=(byte)(rb2-1);

 if(rb2>-128)
 {
 rs.moveToInsertRow();
 rs.updateString("data_word",wt);
 rs.updateInt("code",(int)rb2);
 rs.insertRow();
 }

 dw=search_data_code(w);
 w=t;
 }

 rs.close();
 con.close();

 }

 catch(Exception e)
 {
 System.out.println("VAR_LUT "+e);
 }
}

public byte search_data_code(String w)
{
 byte code=-1;
 byte b[];
 try
 {
 String str="SELECT * FROM
2D_VARIABLE_LENGTH_LUT";
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection
con=DriverManager.getConnection("jdbc:odbc:dna_ds_dd");
 Statement stmt =

con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

 ResultSet rs = stmt.executeQuery(str);

 rs.first();
 while(rs.isAfterLast()==false)
 {
 String s1;
 s1=rs.getString("data_word");

 if(s1.equals(w))
 {
 code=(byte)rs.getInt("code");
 break;
 }

 rs.next();
 }

 rs.close();
 con.close();
 }

 catch(Exception e)
 {
 System.out.println("search data code "+e);
 }
 return(code);
}

De-Compress File Button Code for 2D Coding With Variable
Length LUT

private void
jButton8ActionPerformed(java.awt.event.ActionEvent evt)
 {
 String tf;
 String rsym=null;
 long size;
 float f,g=1;

 tf=textField2.getText()+"/"+textField3.getText();

Govind Prasad Arya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4411- 4416

4415

 File fs=new File(textField1.getText());
 File ft=new File(tf);
 textField6.setText(String.valueOf(fs.length())+" Bytes");
 size=fs.length();
 f=100.00f/size;
 try
 {
 RandomAccessFile fr = new RandomAccessFile(fs,"r");
 RandomAccessFile fw = new RandomAccessFile(ft,"rw");
 byte ch;
 String word;

 ch=(byte)fr.read();
 while(ch!=-1)
 {
 textField15.setText(String.valueOf((char)ch));
 if(ch>=0)
 {

 fw.write(ch);
 textField13.setText(String.valueOf((char)ch));
 }
 else
 {
 word=get_word(ch);
 textField14.setText(String.valueOf(word));
 fw.writeBytes(word);
 textField13.setText(String.valueOf(word));
 }
 ch=(byte)fr.read();
 g=(g+f);
 if(g>100)
 g=100;
 textField17.setText(String.valueOf((int)g));
 }

 fr.close();
 fw.close();
 }
 catch(Exception e)
 {
 System.out.println("decompress button 2D_VAR_LENGTH
"+e);
 }
 textField7.setText(String.valueOf(ft.length())+" Bytes");
 Long v=(ft.length()*100/fs.length());
 textField16.setText(String.valueOf(v)+"%");
 }

public String get_word(byte ch)
{
 String s=null;
 byte b[];
 try
 {
 String str="SELECT * FROM
2D_VARIABLE_LENGTH_LUT";
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection
con=DriverManager.getConnection("jdbc:odbc:dna_ds_dd");
 Statement stmt =

con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

 ResultSet rs = stmt.executeQuery(str);

 if(rs.next()==true)
 rs.first();
 while(rs.isAfterLast()==false)
 {
 b=new byte[1];
 b[0]=(byte)rs.getInt("code");
 if(b[0]==ch)
 {
 s=rs.getString("data_word");
 break;
 }
 rs.next();
 }
 con.close();
 }
 catch(Exception e)
 {
 System.out.println("get_triplet "+e);
 }
 return(s);
}

Govind Prasad Arya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4411- 4416

4416

